Post-selection Inference of High-dimensional Logistic Regression Under Case–Control Design
نویسندگان
چکیده
Confidence sets are of key importance in high-dimensional statistical inference. Under case–control study, a popular response-selective sampling design medical study or econometrics, we consider the confidence intervals and tests for single low-dimensional parameters logistic regression model. The asymptotic properties resulting estimators established under mild conditions. We also testing more general complex hypotheses parameters. procedures proved to be asymptotically exact have satisfactory power. Numerical studies including extensive simulations real data example confirm that proposed method performs well practical settings.
منابع مشابه
High-Dimensional Graphical Model Selection Using l1-Regularized Logistic Regression
We consider the problem of estimating the graph structure associated with a discrete Markov random field. We describe a method based on l1-regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an l1-constraint. Our framework applies to the high-dimensional setting, in which both the number of nodes p and maximum ne...
متن کاملHigh - Dimensional Ising Model Selection Using 1 - Regularized Logistic Regression
We consider the problem of estimating the graph associated with a binary Ising Markov random field. We describe a method based on 1-regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an 1-constraint. The method is analyzed under high-dimensional scaling in which both the number of nodes p and maximum neighborhoo...
متن کاملHigh-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression
We focus on the problem of estimating the graph structure associated with a discrete Markov random field. We describe a method based on `1regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an `1-constraint. Our framework applies to the high-dimensional setting, in which both the number of nodes p and maximum nei...
متن کاملHigh-Dimensional Graphical Model Selection Using $\ell_1$-Regularized Logistic Regression
We focus on the problem of estimating the graph structure associated with a discrete Markov random field. We describe a method based on `1regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an `1-constraint. Our framework applies to the high-dimensional setting, in which both the number of nodes p and maximum nei...
متن کاملBayesian inference for high-dimensional linear regression under mnet priors
Abstract: For regression problems that involve many potential predictors, the Bayesian variable selection (BVS) method is a powerful tool, which associates each model with its posterior probabilities, and achieves superb prediction performance through Bayesian model averaging (BMA). Two challenges of using such models are, specifying a suitable prior, and computing posterior quantities for infe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Business & Economic Statistics
سال: 2022
ISSN: ['1537-2707', '0735-0015']
DOI: https://doi.org/10.1080/07350015.2022.2050245